Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(2): 392-403, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527241

RESUMO

Sugar beet pulp (SBP), sugar beet molasses (SBM) and unfermented grape marcs (UGM) represent important waste in the agro-food sector. If suitably pre-treated, hexose and pentose sugars can be released in high quantities and can subsequently be used by appropriate cell factories as growth media and for the production of (complex) biomolecules, accomplishing the growing demand for products obtained from sustainable resources. One example is vitamin B9 or folate, a B-complex vitamin currently produced by chemical synthesis, almost exclusively in the oxidized form of folic acid (FA). It is therefore desirable to develop novel competitive strategies for replacing its current fossil-based production with a sustainable bio-based process. In this study, we assessed the production of natural folate by the yeast Scheffersomyces stipitis, investigating SBM, SBP and UGM as potential growth media. Pre-treatment of SBM and SBP had previously been optimized in our laboratory; thus, here we focused only on UGM pre-treatment and hydrolysis strategies for the release of fermentable sugars. Then, we optimized the growth of S. stipitis on the three media formulated from those biomasses, working on inoculum pre-adaptation, oxygen availability and supplementation of necessary nutrients to support the microorganism. Folate production, measured with a microbiological assay, reached 188.2 ± 24.86 µg/L on SBM, 130.6 ± 1.34 µg/L on SBP and 101.9 ± 6.62 µg/L on UGM. Here, we demonstrate the flexibility of S. stipitis in utilizing different residual biomasses as growth media. Moreover, we assessed the production of folate from waste, and to the best of our knowledge, we obtained the highest production of folate from residual biomasses ever reported, providing the first indications for the future development of this microbial production process.


Assuntos
Saccharomyces cerevisiae , Vitaminas , Biomassa , Ácido Fólico , Açúcares , Fermentação
2.
Biotechnol Biofuels Bioprod ; 15(1): 98, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123695

RESUMO

BACKGROUND: The demand for naturally derived products is continuously growing. Nutraceuticals such as pre- and post-biotics, antioxidants and vitamins are prominent examples in this scenario, but many of them are mainly produced by chemical synthesis. The global folate market is expected to register a CAGR of 5.3% from 2019 to 2024 and reach USD 1.02 billion by the end of 2024. Vitamin B9, commonly known as folate, is an essential micronutrient for humans. Acting as a cofactor in one-carbon transfer reactions, it is involved in many biochemical pathways, among which the synthesis of nucleotides and amino acids. In addition to plants, many microorganisms can naturally produce it, and this can pave the way for establishing production processes. In this work, we explored the use of Scheffersomyces stipitis for the production of natural vitamin B9 by microbial fermentation as a sustainable alternative to chemical synthesis. RESULTS: Glucose and xylose are the main sugars released during the pretreatment and hydrolysis processes of several residual lignocellulosic biomasses (such as corn stover, wheat straw or bagasse). We optimized the growth conditions in minimal medium formulated with these sugars and investigated the key role of oxygenation and nitrogen source on folate production. Vitamin B9 production was first assessed in shake flasks and then in bioreactor, obtaining a folate production up to 3.7 ± 0.07 mg/L, which to date is the highest found in literature when considering wild type microorganisms. Moreover, the production of folate was almost entirely shifted toward reduced vitamers, which are those metabolically active for humans. CONCLUSIONS: For the first time, the non-Saccharomyces yeast S. stipitis was used to produce folate. The results confirm its potential as a microbial cell factory for folate production, which can be also improved both by genetic engineering strategies and by fine-tuning the fermentation conditions and nutrient requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...